Further combinatorial results for the symmetric inverse monoid
نویسندگان
چکیده
Let In be the set of partial one-to-one transformations on chain Xn={1,2, . , n} and, for each α in In, let h(α)=|Imα|, f(α)=|{x∈Xn:xα=x}| and w(α)=max(Imα). this note, we obtain formulae involving binomial coefficients F(n; p, m, k)=|{α ∈ In:h(α)=p∧f(α)=m∧w(α)=k}| F(n;·, In:f(α)=m∧w(α)=k}| analogous results derangements In.
منابع مشابه
Further Combinatorial Properties of the Symmetric Inverse Semigroup
Let Xn = {1, 2, · · · , n} and let α : Domα ⊆ Xn → Imα ⊆ Xn be a (partial) transformation on Xn. The height of a transformation α is h(α) = | Imα|, the right [left] waist of α is w+(α) = max( Imα) [w−(α) = min( Imα)], and fix of α is denoted by f(α), and defined by f(α) = |F (α)| = |{x ∈ Xn : xα = x}|. In this note we obtain formulae involving binomial coefficients of F (n; p,m, k) = |{α ∈ In :...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملA Presentation for the Dual Symmetric Inverse Monoid
The dual symmetric inverse monoid I ∗ n is the inverse monoid of all isomorphisms between quotients of an n-set. We give a monoid presentation of I ∗ n and, along the way, establish criteria for a monoid to be inverse when it is generated by completely regular elements.
متن کاملA Presentation of the Dual Symmetric Inverse Monoid
The dual symmetric inverse monoid I ∗ n is the inverse monoid of all isomorphisms between quotients of an n-set. We give a monoid presentation of I ∗ n and, along the way, establish criteria for a monoid to be inverse when it is generated by completely regular elements.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra and discrete mathematics
سال: 2022
ISSN: ['1726-3255', '2415-721X']
DOI: https://doi.org/10.12958/adm1793